
Real-Time Object Detection Using a
Sparse 4-Layer LIDAR

Mircea Paul Muresan, Sergiu Nedevschi, Ion Giosan
Computer Science Department

Technical University of Cluj-Napoca
Cluj-Napoca, Romania

{mircea.muresan, sergiu.nedevschi, ion.giosan}@cs.utcluj.ro

Abstract—The robust detection of obstacles, on a given road
path by vehicles equipped with range measurement devices
represents a requirement for many research fields including
autonomous driving and advanced driving assistance systems.
One particular sensor system used for measurement tasks, due to
its known accuracy, is the LIDAR (Light Detection and Ranging).
The commercial price and computational intensiveness of such
systems generally increase with the number of scanning layers.
For this reason, in this paper, a novel six step based obstacle
detection approach using a 4-layer LIDAR is presented. In the
proposed pipeline we tackle the problem of data correction and
temporal point cloud fusion and we present an original method
for detecting obstacles using a combination between a polar
histogram and an elevation grid. The results have been validated
by using objects provided from other range measurement
sensors.

Keywords— Sparse LIDAR, Object detection, 3D Point-Cloud,
Digital Elevation Maps

I. INTRODUCTION

The robust and reliable representation of the environment
is an important task for any application working in outdoor
surroundings. Efficiently detecting and identifying obstacles
from continuous streamed 3D point clouds in various
scenarios are key problems for all intelligent vehicle
applications. As described in [1] any intelligent vehicle can be
described by three commonly accepted modules: perception,
planning and control modules. In the scope of the current
work, we are interested in the perception module, which builds
an internal representation of the environment based on the data
collected from the sensors. For gathering 3D information, in
the case of autonomous vehicles, the perception system
interprets, and commonly receives its input from stereo
cameras [2, 3], 3D-LIDARs [4, 5] and RADAR systems [6].
Even though stereo solutions are more affordable, a major
limitation of a stereo system is the difficulty in dealing with
lack of texture, bad illumination, perspective effect and
darkness among other. RADAR sensors are great at detecting
moving objects made out of metal material, however they fail
to detect items made of porous plastic or wood. Even more,
RADARs usually have a narrow field of view, and to
compensate for this issue they are usually used in arrays that
slightly overlap in order to obtain larger fields of view. One of
the biggest disadvantages of RADARs is that they omit
objects in order, not to over-report. While this characteristic is
very efficient when omitting the road surface, it has very high
risks since it can also omit static objects (for example vehicles

parked on the road) [7]. LIDAR sensors can detect static
objects and are less sensitive to weather and illumination
conditions, however they have a very high purchasing cost.
The price of the LIDAR sensors increases with the number of
scanning layers, the ones having 32 and 64 layers are among
the most expensive. LIDARs having 4-layers are much
cheaper, they have a much larger working range than the
previous mentioned LIDAR systems and they are generally
faster. The drawback of the 4-layer LIDARs is that they have
a smaller scanning angle and ultimately provide fewer
scanning points. The task of detecting obstacles from sparse
point clouds is therefore very challenging for numerous
reasons. First of all the raw point clouds, obtained after
measurement, can be noisy and uneven in consecutive frames.
Secondly, in the case of terrestrial LIDAR measurements,
objects can receive strongly corrupted geometric properties
such as missing parts or deformed shapes due to increased
point cloud densities from the direction of the measurement
[8]. In the context of autonomous vehicles, data from multiple
sensors is fused in order to provide a more robust environment
representation.

In this paper we will tackle the problem of obstacle
detection using 4Layer LIDARs and we will elaborate on the
necessity of each stage from the given pipeline in the context
of sparse LIDARs.

The rest of the paper is structured as follows: section II
presents the related work in the field of object detection using
LIDAR sensors, in section III we present the proposed
pipeline for object detection, section IV provides experimental
results and finally in section V we present the conclusions and
future work.

II. RELATED WORK

There are numerous approaches available in the literature
for detecting obstacles from 3D point clouds. Depending on
the data-structure used, they can be split into two categories:
tree based and grid based approaches.

In the tree based object detection, pre-computed tree-like
data structures such as octree or range tree can be used [9, 10].
These methods are very good at range search, however they
are computationally intensive at initialization. Other recent
approaches use different region growing in order to robustly
detect objects. The authors in [11] present an octree based
occupancy grid that models the environment near the vehicle
and detects moving obstacles from inconsistencies between
scans.

The grid based methods are the second category of
approaches that focus on fast 3D processing for object
detection. In [12] a segmentation of the 3D point cloud and
objects by using a standard connected component algorithm
on a 2D occupancy grid is presented. In [13] the concept of
elevation (or 2.5 grids) maps that store in each cell the height
of objects above ground level is proposed. Roth et al. [14] and
Moravec [15] propose a 3D grid made up from voxels. This
method requires large amounts of computational resources
since the voxels defined cover the whole space, even if in
reality only a few measured points are present in a specific
region. For the task of detecting obstacles, usually grid based
methods work in conjunction with some approaches of
detecting the ground surface. In [16] the RANSAC method is
used to estimate the ground plane. This method is efficient
when the ground is planar, however if the number of points is
not large enough or the ground is curvy the method fails to
detect the road surface. A method that solves the issue of
roads with unequal elevation is presented in [17]. A quadratic
surface model is initially fitted to the region in front of the
vehicle to estimate the road plane. In the current sparse
LIDAR scenario such a technique would not work since the
number of points on the road is very small. The V-disparity
[18] is another method in which the road surface can be
estimated in case of stereo reconstruction, however the
disparity representation is not a natural way to represent 3D
points.

III. PROPOSED SOLUTION

In this paper we will tackle the problem of object detection
when using sparse 4-layer (4L) LIDARs. The reasons why
classical object detection methods might fail is because of the
point cloud noise and sparsity. We will present a method for
correcting the point cloud data in case of a mobile robot.

Fig. 1. Object detection pipeline

Another difficult problem which appears when detecting
objects using sparse LIDAR sensors is the estimation of points
belonging to the ground surface. For solving this issue, in this
section we will describe a method that uses a polar histogram
to determine road points. We will also use an elevation grid
for efficiently labelling and grouping object points after the
road points have been removed. The six step pipeline for
efficiently detecting objects is presented in Fig. 1.

A. Point Cloud Motion Correction and Temporal Fusion
1) Motion Correction

The 4L LIDAR is measuring the environment by means of
laser beams. The complete profile of the environment can be
built, by the permanent rotation of the mirror which is in
connection with the laser beam. A difficult scenario arises
when we are scanning the environment from a mobile
platform. Due to the fact that the car is moving, the points
from every individual scan will be affected by displacement
errors. An intuitive depiction of this phenomenon is displayed
in figure 2 bellow.

Fig. 2. Measurement errors caused by motion

4L LIDARs can generally provide a timestamp in one of
the three runtime moments: when the data acquisition starts,
when it ends or at the middle of the acquisition. Considering
that the timestamp of each 4L LIDAR frame is the timestamp
of the beginning of the acquisition, we compute the timestamp
of each laser point, knowing the resolution of the scan,
duration of a scan, and the channel ID for each point – all
these information are available in the datasheet of the sensor
or in different papers that evaluate the sensor capabilities [18].
An intuitive image of the data provided by the sensor used is
illustrated in Fig. 3.

Fig. 3. Depiction of sparse LIDAR capabilities

Knowing all this information we can compute the
timestamp for each individual point using the equation (1)
below.

 (1)

145 DEG

0.25 DEG
∆t

Channel
 1 Channel

580

Grid with Labels

Filtered 3D points

TF 3D points

Motion Corrected Points

LIDAR Data Acquisition

Point Cloud Motion Correction

3D points

Point Cloud Temporal Fusion

Road Points Detection and Point Cloud Filtering

Creation of 2.5 Elevation Grid

Grouping Obstacle Cells to Define Obstacle Limits

Object filtering

List of Objects

Final Objects
*

t
TS Channeli i

NumberOfChannels

�
�

In the equation above TSi represents the timestamp for
point i, Channeli represents the ith channel from the acquired
data, NumberOfChannels is the total number of channels
available for a LIDAR sensor and Δt refers to the amount of
time needed to perform a scan.

The current motion correction approach computes
transformations on each individual point as presented in [19],
but also relies on ego motion information provided by an
inertial measurement unit (IMU) available on the vehicle.
When computing the cloud transformation matrix we are
taking into account the displacements on x, y, z and the pitch,
yaw and roll information. In equations 2, 3 and 4 bellow we
show how to compute the correction transformation of each
point. TT defines the target timestamp, TP means the
timestamp of the first acquired point, TransformationMatrix
refers to the matrix obtained using the EGO information and
translation displacement values, Tpi refers to the timestamp of
point i and is the correction transformation for point i.

Cloud TT TP� � � (2)

(3)

log()
Tpi TransformationMatrix

Cloud
C ei

� �
� �� �
	

�
�
�

� (4)

Considering tpi
the ith point taken at timestamp t, with

information on axis x, y and z, the correction for the entire
cloud becomes (5). In this equation, N represents the number
of points and ∑ denotes the iteration process through the entire
point cloud.

targetTime(
0

)
N

CorrectedCloud pii
t

Ci ���
�

 (5)

In Fig. 4, the effect of the point cloud correction can be
observed. With white we observe the uncorrected points and
with red we can see the corrected data. The points from the
bottom of the image receive the highest correction whereas the
one from the top of the image is less corrected. Also note that
the differences between the two timestamps are small this is
why the red corrected points are not very much modified
compared to the white uncorrected points.

Fig. 4. Uncorrected (white) vs. corrected (red) LIDAR points

2) Temporal Fusion

 In order to achieve a higher data density several point
clouds are fused together. The reasoning behind this is that, if
we have the useful information in one frame, for example
some road points, they will be propagated up future frames
making the later jobs of future tasks in the pipeline easier. In
our particular scenario we have fused 6 consecutive LIDAR
frames. The transformation function between consecutive
point clouds is computed using the motion correction module
presented before. By we are referring to the motion
correction transformation applied to consecutive point clouds.
The equation of fusing multiple point clouds is presented in
(6).

(6)

Fig. 5. Graphical representation of the TF process

The result of the fusion can be seen in Fig. 6. In the left
hand side we have the motion corrected point cloud, while in
the right hand side we have the corrected and temporal fused
point cloud.

Fig. 6. Corrected point cloud and temporal fused point cloud

B. Road Point Detection and Creation of Elevation Grid

Road estimation from a 4L LIDAR is a challenging task
due to the fact that there are not so many points falling on the
ground surface. The first step for finding the ground plane is
to filter out points which have a high height (z coordinate)
above a threshold of 0.5 m. We are further filtering the
resulted 3D points by considering only the points that have an
amplitude greater than 0.8. The high amplitude can usually
come from lane markings or pedestrian crossings.

We consider that the origin of the center of coordinates is
in front of the vehicle, at ground level, and we can assume that
the road for 10-20 meters will be a line passing through this
origin. We can define this line by the pitch angle that it makes
to the horizontal line passing through the defined origin. So,
we begin to count the points falling on each line for a number
of angles in the side view projection. An intuitive image of
the process is presented in Fig. 7.

 Pcl
1

Pcl
2

Pcl
6

5

, 1 6
1

*i i i
i

FinCl T Pcl Pcl
�

� �

1,1 1,2 1,3
2,1 2,2 2, TransformationMa 3
3,1 3,2 3,3

tri

0

x

0 0 1

r r r tx
r r r t y
r r r tz

�

� �
� �
� �� �

Fig. 7.Graphical depiction of a line sweeping through the points to find
the most suitable parameters for the road plane

A histogram stores the number of points falling on each
line. Finally we identify the line corresponding to the road as
the line with the maximum number of points. We then remove
the ground points from the initial 3D points available. To
identify the points that fall on the lines we convert the polar
coordinates to Cartesian coordinates (7), and compute the
equation of the line, that passes through the origin, in
Cartesian coordinates (the value of r being equal to 20).

cos(); sin()x r y r� � � � (7)

In Fig. 8 the points belonging to the road are encircled
with a red circle. In the left hand side we have the top view
and in the right hand side we have the road points seen in the
side view image (distance-height plane).

Fig. 8. Points belonging to the ground are highleted with red

C. Obstacle Detection and Filtering
After removing the road points, we create a 2.5 elevation

grid. We split the 3D space into cells having a dimension of
40x60 cm, and we create the elevation grid for the points that
have a distance smaller than 50m and a width smaller than 20m
(10 meter in left and right of the ego vehicle). The 3D points
are projected in the grid in a top view manner. In each cell we
store the maximum height from all the points that fall in that
cell and the number of points that belong to the cell (the point
density in the cell). We label a cell with an object label if the
density in that cell is larger than a predefined threshold (in our
case the density threshold value is 4, but this generally depends
on the number of fused laser frames; if the number of fused
frames is larger, the density threshold should be larger as well),
and the height is smaller than 4m. After labelling all cells we
perform a clustering approach in order to fuse the object cells
together. The object cells are fused if they are neighboring
each other in 1 of 8 directions (up, down, left right and four
diagonal ways).

In Fig. 9 we present the elevation grid and the grouped
objects. The lines in the grid are illustrated with green, with red
we depict the clustered objects, with white we denote the road
points or object points which have been filtered, and with blue
we illustrate the bounding boxes for object boundaries.

Fig. 9. Labeled object cells, object boundaries and filtered points

The detected objects can also represent buildings or other
large structures, so in order to allow only items of interest we
have to filter the obtained results. This task is achieved by
imposing size constraints. This means that we will consider an
object to be viable only if the length and width are smaller
than predefined values (in our case width 3m and length 12m).
We also do not consider objects that are smaller than 2 grid
cells. The final result can be seen in Fig. 10.

Fig. 10. Orientative intensity image of the scene (top); Unfiltered labeled
objects (middle); Filtered objects in yellow bounding boxes (bottom)

After the filtering process there might still be other objects
detected, like poles, longitudinal bariers on the side of the road
or smaller parts of buildings which, due to the points
sparseness, get labeled as different objects. As humans we
realize what such structures mean, because we also have
visual information about the environment, however just by
looking at the points we cannot say whether they represent
useful information or not. For this reason we have decided to
report them as objects and not filter them out.

IV. EXPERIMENTAL RESULTS

In this section we present an evaluation of the proposed
algorithm in terms of quality and running time. We will
compare the object list given by our solution to the object list
given by a 77 GHz long range radar in a traffic situation.

For this reason we propose two scenarios: the first scenario
is following just one vehicle for a number of frames and see
how many times our algorithm is not able to detect the vehicle
and the radar is able to detect it; the second scenario is in an
intersection where there are multiple cars and, for a number of
frames, we count how many vehicles does our solution miss
compared to the radar approach. Even though the two sensors
are different we have selected scenes where the weather
conditions are good for both LIDAR and RADAR, and the
objects can be detected by both sensors.

The system on which we have tested our method contains
an Intel i5-2500 CPU with 3 GHz frequency, no hardware
acceleration methods have been used in the algorithm. Both
LIDAR and RADAR objects are in the same reference frame
and the RADAR objects have also been motion corrected to a
common timestamp with the LIDARs.

For simplicity reasons we have projected, in a top view
manner, the 3D RADAR objects into the same virtual image
as the LIDAR objects, and to each 3D world object we have
associated a 2D virtual object. For each virtual LIDAR object
we try to identify the RADAR object that is closest to it, in a
circle of radius 60 pixels in the virtual image. In case there are
several objects in this circle we also look to the object that has
the dimensions most similar to the LIDAR virtual object. In
Fig. 11 we illustrate an association between a LIDAR object
and a RADAR object. Please note that the RADAR object is
in the association circle of the LIDAR.

Fig. 11. LIDAR-RADAR object association

In Fig. 11 with yellow we mark the identified LIDAR
objects, with blue the RADAR object, with white the filtered
3D points and with green any found association.

In Fig. 12 we illustrate the RADAR-LIDAR association in
a crowded intersection. The significance of the colors used
remains the same.

Fig. 12. Sensor object associtation in an intersection

In Table I we present the number of unassociated radar
objects, as percentage, for a single road object, for 300 frames.
In the second row of the table, we present the percentage of
unassociated road objects for over 1000 images. We would
like to mention the fact that in some scenarios the LIDAR
might not be able to capture the object in front of it due to
occlusion, while the RADAR might be able to identify it. We
came across this scenario when we evaluated the algorithm in
a crowded intersection where multiple consecutive vehicles
are placed one in front of each other. This phenomenon
happens because of the sensors positioning on the vehicle.

Fig. 13. Partialy occluded object scenario; the top image represents the data
from the camera; bottom image represents the top view image containing

LIDAR and RADAR objects.

In figure 13 we can see that the vehicle in front is correctly
detected and associated to a RADAR object. The second
vehicle form our position is not detected by the LIDAR
algorithm due to the fact that the first vehicle in front of the
ego vehicle is obstructing the field of view.
The achieved processing frame rate of the proposed algorithm
on the specified hardware is of 15 frames per second.

TABLE I. OBJECT DETECTION ACCURACY

Scenario Nr. of frames Accuracy

Single object detection 300 97%

Multiple object detection 1000 93%

V. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed an original real time
solution for detecting objects using a sparse 4L LIDAR. One
of the main reasons for which classical detection schemes
might fail to detect objects when using 4L LIDARs is the 3D
points’ sparseness. Another reason which has determined us to
investigate this problem is the high price of denser layer (32L,
64L) LIDARs. In the development of our algorithm we have
provided solutions for problems like motion correction,
temporal fusion, road detection, elevation grid creation and so
on. The original object list is filtered using size constraints
such that buildings or other very large structures are
eliminated. The six step algorithm was able to successfully
detect objects in real time in various traffic scenarios.

For evaluating our solution we used objects provided by a
RADAR sensor and we have performed a 2D object
association to view how many RADAR objects do not get
coupled to the LIDAR objects.

In future work we will try to correct the positions of the
points belonging to moving objects using their relative
velocity; in the current approach we are using only using the
ego speed for the motion correction. Another improvement
that would increase the robustness of our solution would be
the implementation of object tracking for the identified
objects.

ACKNOWLEDGMENT

This work was supported by the EU H2020 project, Up-
Drive under grant nr. 688652.

This work was also supported by the MULTISPECT grant
(Multispectral environment perception by fusion of 2D and 3D
sensorial data from the visible and infrared spectrum) of the
Romanian National Authority for Scientific Research and
Innovation / UEFISCDI, project code PN-III-P4-ID-PCE-
2016-0727, contract number 60/2017.

REFERENCES

[1] R. Murphy, Introduction to AI robotics, MIT press, 2000.
[2] M. P. Muresan, S. Nedevschi and R. Danescu, "Patch warping and local

constraints for improved block matching stereo correspondence," 2016
IEEE 12th International Conference on Intelligent Computer
Communication and Processing (ICCP), Cluj-Napoca, 2016, pp. 321-
327.

[3] J. Žbontar and Y. LeCun, "Computing the stereo matching cost with a
convolutional neural network," 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Boston, MA, 2015, pp. 1592-
1599.

[4] S. Hwang, N. Kim, Y. Choi, S. Lee and I. S. Kweon, "Fast multiple
objects detection and tracking fusing color camera and 3D LIDAR for
intelligent vehicles," 2016 13th International Conference on Ubiquitous
Robots and Ambient Intelligence (URAI), Xi'an, 2016, pp. 234-239.R.
Nicole, “Title of paper with only first word capitalized,” J. Name Stand.
Abbrev., in press.

[5] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S.
Ettinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston,
S. Klumpp, D. Langer, A. Levandowski, J. Levinson, J. Marcil, D.
Orenstein, J. Paefgen, I. Penny, A. Petrovskaya, M. Pflueger, G. Stanek,
D. Stavens, A. Vogt, S. Thrun, Junior: The stanford entry in the urban
challenge, Journal of Field Robotics 25 (9) (2008) 569–597

[6] F. J. Botha, C. E. van Daalen and J. Treurnicht, "Data fusion of radar
and stereo vision for detection and tracking of moving objects," 2016
Pattern Recognition Association of South Africa and Robotics and
Mechatronics International Conference (PRASA-RobMech),
Stellenbosch, 2016, pp. 1-7.

[7] Driverless: Intelligent Cars and the Road Ahead By Hod Lipson, Melba
Kurman

[8] Behley, J., Steinhage, V., Cremers, A.B.: Performance of histogram
descriptors for the classification of 3D laser range data in urban
environments. In: ICRA. pp. 4391–4398. IEEE

[9] Benedek, C., Moln ár, D., Szir ányi, T.: A Dynamic MRF Model for
Foreground Detection on Range Data Sequences of Rotating Multi-
Beam Lidar. In: International Workshop on Depth Image Analysis,
LNCS. Tsukuba City, Japan (2012)

[10] Rusu, R.B., Cousins, S.: 3D is here: Point cloud library (pcl). In:
International Conference on Robotics and Automation. Shanghai, China
(2011)

[11] Azim, A., Aycard, O.: Detection, classification and tracking of moving
objects in a 3D environment. In: Intelligent Vehicles Symposium. pp.
802–807 (2012)

[12] Himmelsbach, M., Muller, A., Luttel, T., Wunsche, H.J.: LIDAR-based
3D Object Perception. In: Proceedings of 1st International Workshop on
Cognition for Technical Systems. M ünchen (Oct 2008)

[13] M. Herbert, C. Caillas, E. Krotkov, I. S. Kweon, T. Kanade, Terrain
mapping for a roving planetary explorer, in: Robotics and Automation,
1989. Proceedings. 1989 IEEE International Conference on, IEEE, 1989,
pp. 997–1002.

[14] Roth-Tabak, R. Jain, Building an environment model using depth
information, Computer 22 (6) (1989) 85–90

[15] H. Moravec, Robot spatial perception by stereoscopic vision and 3d
evidence grids, Perception,(September).

[16] M. Oliveira, V. Santos, A. Sappa, P.Dias, Scene representations for
autonomous driving: an approach based on polygonal primitives, in: 2nd

Iberian Robotics Conference, 2015.
[17] Florin Oniga, Sergiu Nedevschi, Processing Dense Stereo Data Using

Elevation Maps:Road Surface, Traffic Isle and Obstacle detection, IEEE
Transactions on Intelligent Transportation Systems, vol 12 No 4,
December 2011, pp 1331-1342

[18] Zeisler, J., and H. G. Maas. "ANALYSIS OF THE PERFORMANCE
OF A LASER SCANNER FOR PREDICTIVE AUTOMOTIVE
APPLICATIONS." ISPRS Annals of Photogrammetry, Remote Sensing
and Spatial Information Sciences (2015): 49-56.

