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Abstract—The robust detection of obstacles, on a given road 
path by vehicles equipped with range measurement devices 
represents a requirement for many research fields including 
autonomous driving and advanced driving assistance systems. 
One particular sensor system used for measurement tasks, due to 
its known accuracy, is the LIDAR (Light Detection and Ranging).  
The commercial price and computational intensiveness of such 
systems generally increase with the number of scanning layers. 
For this reason, in this paper, a novel six step based obstacle 
detection approach using a 4-layer LIDAR is presented. In the 
proposed pipeline we tackle the problem of data correction and 
temporal point cloud fusion and we present an original method 
for detecting obstacles using a combination between a polar 
histogram and an elevation grid. The results have been validated 
by using objects provided from other range measurement 
sensors. 

Keywords— Sparse LIDAR, Object detection, 3D Point-Cloud, 
Digital Elevation Maps 

I. INTRODUCTION 

The robust and reliable representation of the environment 
is an important task for any application working in outdoor 
surroundings.  Efficiently detecting and identifying obstacles 
from continuous streamed 3D point clouds in various 
scenarios are key problems for all intelligent vehicle 
applications. As described in [1] any intelligent vehicle can be 
described by three commonly accepted modules:  perception, 
planning and control modules. In the scope of the current 
work, we are interested in the perception module, which builds 
an internal representation of the environment based on the data 
collected from the sensors.  For gathering 3D information, in 
the case of autonomous vehicles, the perception system 
interprets, and commonly receives its input from stereo 
cameras [2, 3], 3D-LIDARs [4, 5] and RADAR systems [6]. 
Even though stereo solutions are more affordable, a major 
limitation of a stereo system is the difficulty in dealing with 
lack of texture, bad illumination, perspective effect and 
darkness among other. RADAR sensors are great at detecting 
moving objects made out of metal material, however they fail 
to detect items made of porous plastic or wood. Even more, 
RADARs usually have a narrow field of view, and to 
compensate for this issue they are usually used in arrays that 
slightly overlap in order to obtain larger fields of view. One of 
the biggest disadvantages of RADARs is that they omit 
objects in order, not to over-report. While this characteristic is 
very efficient when omitting the road surface, it has very high 
risks since it can also omit static objects (for example vehicles 

parked on the road) [7]. LIDAR sensors can detect static 
objects and are less sensitive to weather and illumination 
conditions, however they have a very high purchasing cost. 
The price of the LIDAR sensors increases with the number of 
scanning layers, the ones having 32 and 64 layers are among 
the most expensive. LIDARs having 4-layers are much 
cheaper, they have a much larger working range than the 
previous mentioned LIDAR systems and they are generally 
faster. The drawback of the 4-layer LIDARs is that they have 
a smaller scanning angle and ultimately provide fewer 
scanning points. The task of detecting obstacles from sparse 
point clouds is therefore very challenging for numerous 
reasons. First of all the raw point clouds, obtained after 
measurement, can be noisy and uneven in consecutive frames. 
Secondly, in the case of terrestrial LIDAR measurements, 
objects can receive strongly corrupted geometric properties 
such as missing parts or deformed shapes due to increased 
point cloud densities from the direction of the measurement 
[8].  In the context of autonomous vehicles, data from multiple 
sensors is fused in order to provide a more robust environment 
representation.  

In this paper we will tackle the problem of obstacle 
detection using 4Layer LIDARs and we will elaborate on the 
necessity of each stage from the given pipeline in the context 
of sparse LIDARs.  

The rest of the paper is structured as follows: section II 
presents the related work in the field of object detection using 
LIDAR sensors, in section III we present the proposed 
pipeline for object detection, section IV provides experimental 
results and finally in section V we present the conclusions and 
future work. 

II. RELATED WORK

There are numerous approaches available in the literature 
for detecting obstacles from 3D point clouds. Depending on 
the data-structure used, they can be split into two categories: 
tree based and grid based approaches. 

In the tree based object detection, pre-computed tree-like 
data structures such as octree or range tree can be used [9, 10]. 
These methods are very good at range search, however they 
are computationally intensive at initialization. Other recent 
approaches use different region growing in order to robustly 
detect objects. The authors in [11] present an octree based 
occupancy grid that models the environment near the vehicle 
and detects moving obstacles from inconsistencies between 
scans. 



The grid based methods are the second category of 
approaches that focus on fast 3D processing for object 
detection. In [12] a segmentation of the 3D point cloud and 
objects by using a standard connected component algorithm 
on a 2D occupancy grid is presented. In [13] the concept of 
elevation (or 2.5 grids) maps that store in each cell the height 
of objects above ground level is proposed.  Roth et al. [14] and 
Moravec [15] propose a 3D grid made up from voxels. This 
method requires large amounts of computational resources 
since the voxels defined cover the whole space, even if in 
reality only a few measured points are present in a specific 
region. For the task of detecting obstacles, usually grid based 
methods work in conjunction with some approaches of 
detecting the ground surface. In [16] the RANSAC method is 
used to estimate the ground plane. This method is efficient 
when the ground is planar, however if the number of points is 
not large enough or the ground is curvy the method fails to 
detect the road surface. A method that solves the issue of 
roads with unequal elevation is presented in [17]. A quadratic 
surface model is initially fitted to the region in front of the 
vehicle to estimate the road plane. In the current sparse 
LIDAR scenario such a technique would not work since the 
number of points on the road is very small. The V-disparity 
[18] is another method in which the road surface can be 
estimated in case of stereo reconstruction, however the 
disparity representation is not a natural way to represent 3D 
points.  

III. PROPOSED SOLUTION

In this paper we will tackle the problem of object detection 
when using sparse 4-layer (4L) LIDARs. The reasons why 
classical object detection methods might fail is because of the 
point cloud noise and sparsity. We will present a method for 
correcting the point cloud data in case of a mobile robot.  

Fig. 1. Object detection pipeline 

Another difficult problem which appears when detecting 
objects using sparse LIDAR sensors is the estimation of points 
belonging to the ground surface. For solving this issue, in this 
section we will describe a method that uses a polar histogram 
to determine road points. We will also use an elevation grid 
for efficiently labelling and grouping object points after the 
road points have been removed. The six step pipeline for 
efficiently detecting objects is presented in Fig. 1.

A. Point Cloud Motion Correction and Temporal Fusion 
1) Motion Correction

The 4L LIDAR is measuring the environment by means of 
laser beams. The complete profile of the environment can be 
built, by the permanent rotation of the mirror which is in 
connection with the laser beam. A difficult scenario arises 
when we are scanning the environment from a mobile 
platform. Due to the fact that the car is moving, the points 
from every individual scan will be affected by displacement 
errors. An intuitive depiction of this phenomenon is displayed 
in figure 2 bellow. 

Fig. 2. Measurement errors caused by motion 

4L LIDARs can generally provide a timestamp in one of 
the three runtime moments:  when the data acquisition starts, 
when it ends or at the middle of the acquisition. Considering 
that the timestamp of each 4L LIDAR frame is the timestamp 
of the beginning of the acquisition, we compute the timestamp 
of each laser point, knowing the resolution of the scan, 
duration of a scan, and the channel ID for each point – all 
these information are available in the datasheet of the sensor 
or in different papers that evaluate the sensor capabilities [18]. 
An intuitive image of the data provided by the sensor used is 
illustrated in Fig. 3.  

Fig. 3. Depiction of sparse LIDAR capabilities 

Knowing all this information we can compute the 
timestamp for each individual point using the equation (1) 
below.  
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In the equation above TSi represents the timestamp for 
point i, Channeli represents the ith channel from the acquired 
data, NumberOfChannels is the total number of channels 
available for a LIDAR sensor and Δt refers to the amount of 
time needed to perform a scan.  

The current motion correction approach computes 
transformations on each individual point as presented in [19], 
but also relies on ego motion information provided by an 
inertial measurement unit (IMU) available on the vehicle. 
When computing the cloud transformation matrix we are 
taking into account the displacements on x, y, z and the pitch,
yaw and roll information. In equations 2, 3 and 4 bellow we 
show how to compute the correction transformation of each 
point. TT defines the target timestamp, TP means the 
timestamp of the first acquired point, TransformationMatrix
refers to the matrix obtained using the EGO information and 
translation displacement values, Tpi refers to the timestamp of 
point i and  is the correction transformation for point i. 
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Considering tpi
the ith point taken at timestamp t, with

information on axis x, y and z, the correction for the entire 
cloud becomes (5). In this equation, N represents the number 
of points and ∑ denotes the iteration process through the entire 
point cloud. 
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In Fig. 4, the effect of the point cloud correction can be 
observed. With white we observe the uncorrected points and 
with red we can see the corrected data. The points from the 
bottom of the image receive the highest correction whereas the 
one from the top of the image is less corrected. Also note that 
the differences between the two timestamps are small this is 
why the red corrected points are not very much modified 
compared to the white uncorrected points. 

Fig. 4. Uncorrected (white) vs. corrected (red) LIDAR points 

2) Temporal Fusion

 In order to achieve a higher data density several point 
clouds are fused together. The reasoning behind this is that, if 
we have the useful information in one frame, for example 
some road points, they will be propagated up future frames 
making the later jobs of future tasks in the pipeline easier. In 
our particular scenario we have fused 6 consecutive LIDAR 
frames. The transformation function between consecutive 
point clouds is computed using the motion correction module 
presented before. By  we are referring to the motion 
correction transformation applied to consecutive point clouds. 
The equation of fusing multiple point clouds is presented in 
(6).  

(6) 

Fig. 5. Graphical representation of the TF process 

The result of the fusion can be seen in Fig. 6. In the left 
hand side we have the motion corrected point cloud, while in 
the right hand side we have the corrected and temporal fused 
point cloud.  

Fig. 6. Corrected point cloud and temporal fused point cloud 

B. Road Point Detection and Creation of Elevation Grid

Road estimation from a 4L LIDAR is a challenging task 
due to the fact that there are not so many points falling on the 
ground surface.  The first step for finding the ground plane is 
to filter out points which have a high height (z coordinate) 
above a threshold of 0.5 m. We are further filtering the 
resulted 3D points by considering only the points that have an 
amplitude greater than 0.8. The high amplitude can usually 
come from lane markings or pedestrian crossings.    

We consider that the origin of the center of coordinates is 
in front of the vehicle, at ground level, and we can assume that 
the road for 10-20 meters will be a line passing through this 
origin.  We can define this line by the pitch angle that it makes 
to the horizontal line passing through the defined origin. So, 
we begin to count the points falling on each line for a number 
of angles in the side view projection.  An intuitive image of 
the process is presented in Fig. 7.
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Fig. 7.Graphical depiction of a line sweeping through the points to find 
the most suitable parameters for the road plane 

A histogram stores the number of points falling on each 
line. Finally we identify the line corresponding to the road as 
the line with the maximum number of points. We then remove 
the ground points from the initial 3D points available.  To 
identify the points that fall on the lines we convert the polar 
coordinates to Cartesian coordinates (7), and compute the 
equation of the line, that passes through the origin, in 
Cartesian coordinates (the value of r being equal to 20).  

cos( ); sin( )x r y r� � � � (7) 

In Fig. 8 the points belonging to the road are encircled 
with a red circle. In the left hand side we have the top view 
and in the right hand side we have the road points seen in the 
side view image (distance-height plane).  

Fig. 8. Points belonging to the ground are highleted with red 

C. Obstacle Detection and Filtering 
After removing the road points, we create a 2.5 elevation 

grid. We split the 3D space into cells having a dimension of 
40x60 cm, and we create the elevation grid for the points that 
have a distance smaller than 50m and a width smaller than 20m 
(10 meter in left and right of the ego vehicle). The 3D points 
are projected in the grid in a top view manner. In each cell we 
store the maximum height from all the points that fall in that 
cell and the number of points that belong to the cell (the point 
density in the cell). We label a cell with an object label if the 
density in that cell is larger than a predefined threshold (in our 
case the density threshold value is 4, but this generally depends 
on the number of fused laser frames; if the number of fused 
frames is larger, the density threshold should be larger as well), 
and the height is smaller than 4m.  After labelling all cells we 
perform a clustering approach in order to fuse the object cells 
together.  The object cells are fused if they are neighboring 
each other in 1 of 8 directions (up, down, left right and four 
diagonal ways).   

In Fig. 9 we present the elevation grid and the grouped 
objects. The lines in the grid are illustrated with green, with red 
we depict the clustered objects, with white we denote the road 
points or object points which have been filtered, and with blue 
we illustrate the bounding boxes  for object boundaries. 

Fig. 9. Labeled object cells, object boundaries and filtered points 

The detected objects can also represent buildings or other 
large structures, so in order to allow only items of interest we 
have to filter the obtained results. This task is achieved by 
imposing size constraints. This means that we will consider an 
object to be viable only if the length and width are smaller 
than predefined values (in our case width 3m and length 12m). 
We also do not consider objects that are smaller than 2 grid 
cells.  The final result can be seen in Fig. 10.

Fig. 10. Orientative intensity image of the scene (top); Unfiltered labeled 
objects (middle); Filtered objects in yellow bounding boxes (bottom) 



After the filtering process there might still be other objects 
detected, like poles, longitudinal bariers on the side of the road 
or smaller parts of buildings which, due to the points 
sparseness, get labeled as different objects. As humans we 
realize what such structures mean, because we also have 
visual information about the environment, however  just by 
looking at the points we cannot say whether they represent 
useful information or not. For this reason we have decided to 
report them as objects and not filter them out. 

IV. EXPERIMENTAL RESULTS

In this section we present an evaluation of the proposed 
algorithm in terms of quality and running time. We will 
compare the object list given by our solution to the object list 
given by a 77 GHz long range radar in a traffic situation.  

For this reason we propose two scenarios: the first scenario 
is following just one vehicle for a number of frames and see 
how many times our algorithm is not able to detect the vehicle 
and the radar is able to detect it; the second scenario is in an 
intersection where there are multiple cars and, for a number of 
frames, we count how many vehicles does our solution miss 
compared to the radar approach. Even though the two sensors 
are different we have selected scenes where the weather 
conditions are good for both LIDAR and RADAR, and the 
objects can be detected by both sensors.  

The system on which we have tested our method contains 
an Intel i5-2500 CPU with 3 GHz frequency, no hardware 
acceleration methods have been used in the algorithm. Both 
LIDAR and RADAR objects are in the same reference frame 
and the RADAR objects have also been motion corrected to a 
common timestamp with the LIDARs.  

For simplicity reasons we have projected, in a top view 
manner, the 3D RADAR objects into the same virtual image 
as the LIDAR objects, and to each 3D world object we have 
associated a 2D virtual object. For each virtual LIDAR object 
we try to identify the RADAR object that is closest to it, in a 
circle of radius 60 pixels in the virtual image. In case there are 
several objects in this circle we also look to the object that has 
the dimensions most similar to the LIDAR virtual object. In 
Fig. 11 we illustrate an association between a LIDAR object 
and a RADAR object. Please note that the RADAR object is 
in the association circle of the LIDAR.  

Fig. 11. LIDAR-RADAR object association

In Fig. 11 with yellow we mark the identified LIDAR 
objects, with blue the RADAR object, with white the filtered 
3D points and with green any found association.  

In Fig. 12 we illustrate the RADAR-LIDAR association in 
a crowded intersection. The significance of the colors used 
remains the same. 

Fig. 12. Sensor object associtation in an intersection 

In Table I we present the number of unassociated radar 
objects, as percentage, for a single road object, for 300 frames. 
In the second row of the table, we present the percentage of
unassociated road objects for over 1000 images.  We would 
like to mention the fact that in some scenarios the LIDAR 
might not be able to capture the object in front of it due to 
occlusion, while the RADAR might be able to identify it. We 
came across this scenario when we evaluated the algorithm in 
a crowded intersection where multiple consecutive vehicles 
are placed one in front of each other. This phenomenon 
happens because of the sensors positioning on the vehicle.  

Fig. 13. Partialy occluded object scenario; the top image represents the data
from the camera; bottom image represents the top view image containing 

LIDAR and RADAR objects. 



In figure 13 we can see that the vehicle in front is correctly 
detected and associated to a RADAR object. The second 
vehicle form our position is not detected by the LIDAR 
algorithm due to the fact that the first vehicle in front of the 
ego vehicle is obstructing the field of view.  
The achieved processing frame rate of the proposed algorithm 
on the specified hardware is of 15 frames per second. 

TABLE I. OBJECT DETECTION ACCURACY 

Scenario Nr. of frames Accuracy

Single object detection 300 97%

Multiple object detection 1000 93%

V. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed an original real time 
solution for detecting objects using a sparse 4L LIDAR.  One 
of the main reasons for which classical detection schemes 
might fail to detect objects when using 4L LIDARs is the 3D 
points’ sparseness. Another reason which has determined us to 
investigate this problem is the high price of denser layer (32L, 
64L) LIDARs. In the development of our algorithm we have 
provided solutions for problems like motion correction, 
temporal fusion, road detection, elevation grid creation and so 
on. The original object list is filtered using size constraints 
such that buildings or other very large structures are 
eliminated. The six step algorithm was able to successfully 
detect objects in real time in various traffic scenarios. 

For evaluating our solution we used objects provided by a 
RADAR sensor and we have performed a 2D object 
association to view how many RADAR objects do not get 
coupled to the LIDAR objects.  

In future work we will try to correct the positions of the 
points belonging to moving objects using their relative 
velocity; in the current approach we are using only using the 
ego speed for the motion correction. Another improvement 
that would increase the robustness of our solution would be 
the implementation of object tracking for the identified 
objects. 
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